
Unit I

Chapter 1: Introduction

Overview:

 The OSI (open systems interconnection) security architecture provides a systematic framework for 

defining security attacks, mechanisms, and services.

 Security attacks are classified as either passive attacks, which include unauthorized reading of a 

message of file and traffic analysis; and active attacks, such as modification of messages or files, and 

denial of service.

 A security mechanism is any process (or a device incorporating such a process) that is designed to 

detect, prevent, or recover from a security attack. Examples of mechanisms are encryption

algorithms, digital signatures, and authentication protocols.

 Security services include authentication, access control, data confidentiality, data integrity, 

nonrepudiation, and availability.

The requirements of information security within an organization have undergone two major changes in 

the last several decades. Before the widespread use of data processing equipment, the security of information 

felt to be valuable to an organization was provided primarily by physical and administrative means. An 

example of the former is the use of rugged filing cabinets with a combination lock for storing sensitive 

documents. An example of the latter is personnel screening procedures used during the hiring process.

With the introduction of the computer, the need for automated tools for protecting files and other 

information stored on the computer became evident. This is especially the case for a shared system, such as a 

time-sharing system, and the need is even more acute for systems that can be accessed over a public 

telephone network, data network, or the Internet. The generic name for the collection of tools designed to 

protect data and to thwart hackers is computer security.

The second major change that affected security is the introduction of distributed systems and the use of 

networks and communications facilities for carrying data between terminal user and computer and between 

computer and computer. Network security measures are needed to protect data during their transmission. In 

fact, the term network security is somewhat misleading, because virtually all business, government, and 

academic organizations interconnect their data processing equipment with a collection of interconnected 

networks. 



consider the following examples of security violations:

1. User A transmits a file to user B. The file contains sensitive information (e.g., payroll records) that is 

to be protected from disclosure. User C, who is not authorized to read the file, is able to monitor the 

transmission and capture a copy of the file during its transmission.

2. A network manager, D, transmits a message to a computer, E, under its management. The message 

instructs computer E to update an authorization file to include the identities of a number of new users 

who are to be given access to that computer. User F intercepts the message, alters its contents to add 

or delete entries, and then forwards the message to E, which accepts the message as coming from 

manager D and updates its authorization file accordingly.

3. Rather than intercept a message, user F constructs its own message with the desired entries and 

transmits that message to E as if it had come from manager D. Computer E accepts the message as 

coming from manager D and updates its authorization file accordingly.

4. An employee is fired without warning. The personnel manager sends a message to a server system to 

invalidate the employee's account. When the invalidation is accomplished, the server is to post a 

notice to the employee's file as confirmation of the action. The employee is able to intercept the 

message and delay it long enough to make a final access to the server to retrieve sensitive 

information. The message is then forwarded, the action taken, and the confirmation posted. The 

employee's action may go unnoticed for some considerable time.

5. A message is sent from a customer to a stockbroker with instructions for various transactions. 

Subsequently, the investments lose value and the customer denies sending the message.

Although this list by no means exhausts the possible types of security violations, it illustrates the range of 

concerns of network security.

Internetwork security is both fascinating and complex. Some of the reasons follow:

1. Security involving communications and networks is not as simple as it might first appear to the 

novice. The requirements seem to be straightforward; indeed, most of the major requirements for 

security services can be given self-explanatory one-word labels: confidentiality, authentication, 

nonrepudiation, integrity. But the mechanisms used to meet those requirements can be quite complex, 

and understanding them may involve rather subtle reasoning.

2. In developing a particular security mechanism or algorithm, one must always consider potential 

attacks on those security features. In many cases, successful attacks are designed by looking at the 

problem in a completely different way, therefore exploiting an unexpected weakness in the 

mechanism.



3. Because of point 2, the procedures used to provide particular services are often counterintuitive: It is 

not obvious from the statement of a particular requirement that such elaborate measures are needed. It 

is only when the various countermeasures are considered that the measures used make sense.

4. Having designed various security mechanisms, it is necessary to decide where to use them. This is 

true both in terms of physical placement (e.g., at what points in a network are certain security 

mechanisms needed) and in a logical sense [e.g., at what layer or layers of an architecture such as 

TCP/IP (Transmission Control Protocol/Internet Protocol) should mechanisms be placed].

5. Security mechanisms usually involve more than a particular algorithm or protocol. They usually also 

require that participants be in possession of some secret information (e.g., an encryption key), which 

raises questions about the creation, distribution, and protection of that secret information. There is 

also a reliance on communications protocols whose behavior may complicate the task of developing 

the security mechanism. For example, if the proper functioning of the security mechanism requires 

setting time limits on the transit time of a message from sender to receiver, then any protocol or 

network that introduces variable, unpredictable delays may render such time limits meaningless.

Thus, there is much to consider. This chapter provides a general overview of the subject matter that 

structures the material in the remainder of the book. We begin with a general discussion of network security 

services and mechanisms and of the types of attacks they are designed for. Then we develop a general overall 

model within which the security services and mechanisms can be viewed.

1.1. Security Trends

In 1994, the Internet Architecture Board (IAB) issued a report entitled "Security in the Internet 

Architecture" (RFC 1636). The report stated the general consensus that the Internet needs more and better 

security, and it identified key areas for security mechanisms. Among these were the need to secure the 

network infrastructure from unauthorized monitoring and control of network traffic and the need to secure 

end-user-to-end-user traffic using authentication and encryption mechanisms.

1.2. The OSI Security Architecture

To assess effectively the security needs of an organization and to evaluate and choose various 

security products and policies, the manager responsible for security needs some systematic way of defining 

the requirements for security and characterizing the approaches to satisfying those requirements. This is 

difficult enough in a centralized data processing environment; with the use of local and wide area networks, 

the problems are compounded.



For our purposes, the OSI security architecture provides a useful, if abstract, overview of many of the 

concepts that this book deals with. The OSI security architecture focuses on security attacks, mechanisms, 

and services. These can be defined briefly as follows:

 Security attack: Any action that compromises the security of information owned by an organization.

 Security mechanism: A process (or a device incorporating such a process) that is designed to detect, 

prevent, or recover from a security attack.

 Security service: A processing or communication service that enhances the security of the data 

processing systems and the information transfers of an organization. The services are intended to 

counter security attacks, and they make use of one or more security mechanisms to provide the 

service.

Threat

A potential for violation of security, which exists when there is a circumstance, capability, action, or event 

that could breach security and cause harm. That is, a threat is a possible danger that might exploit a 

vulnerability.

Attack

An assault on system security that derives from an intelligent threat; that is, an intelligent act that is a 

deliberate attempt (especially in the sense of a method or technique) to evade security services and violate 

the security policy of a system.

1.3. Security Attacks

A useful means of classifying security attacks, used both in X.800 and RFC 2828, is in terms of 

passive attacks and active attacks. A passive attack attempts to learn or make use of information from the 

system but does not affect system resources. An active attack attempts to alter system resources or affect 

their operation.

Passive Attacks

Passive attacks are in the nature of eavesdropping on, or monitoring of, transmissions. The goal of the 

opponent is to obtain information that is being transmitted. Two types of passive attacks are release of 

message contents and traffic analysis.



The release of message contents is easily understood (Figure 1.3). A telephone conversation, an 

electronic mail message, and a transferred file may contain sensitive or confidential information. We would 

like to prevent an opponent from learning the contents of these transmissions.

Figure 1.3. Passive Attacks

A second type of passive attack, traffic analysis, is subtler (Figure 1.3). Suppose that we had a way 

of masking the contents of messages or other information traffic so that opponents, even if they captured the 

message, could not extract the information from the message. The common technique for masking contents 

is encryption. If we had encryption protection in place, an opponent might still be able to observe the pattern 

of these messages. The opponent could determine the location and identity of communicating hosts and 

could observe the frequency and length of messages being exchanged. This information might be useful in 

guessing the nature of the communication that was taking place.

Passive attacks are very difficult to detect because they do not involve any alteration of the data. 

Typically, the message traffic is sent and received in an apparently normal fashion and neither the sender nor 

receiver is aware that a third party has read the messages or observed the traffic pattern. However, it is 

feasible to prevent the success of these attacks, usually by means of encryption. Thus, the emphasis in 

dealing with passive attacks is on prevention rather than detection.

Active Attacks

Active attacks involve some modification of the data stream or the creation of a false stream and can 

be subdivided into four categories: masquerade, replay, modification of messages, and denial of service.



A masquerade takes place when one entity pretends to be a different entity (Figure 1.4). A 

masquerade attack usually includes one of the other forms of active attack. For example, authentication 

sequences can be captured and replayed after a valid authentication sequence has taken place, thus enabling 

an authorized entity with few privileges to obtain extra privileges by impersonating an entity that has those 

privileges.

Figure 1.4. Active Attacks

Modification of messages simply means that some portion of a legitimate message is altered, or that 

messages are delayed or reordered, to produce an unauthorized effect. For example, a message meaning 

"Allow John Smith to read confidential file accounts" is modified to mean "Allow Fred Brown to read 

confidential file accounts."

The denial of service prevents or inhibits the normal use or management of communications 

facilities. This attack may have a specific target; for example, an entity may suppress all messages directed to 

a particular destination (e.g., the security audit service). Another form of service denial is the disruption of an 

entire network, either by disabling the network or by overloading it with messages so as to degrade 

performance.

1.4. Security Services

X.800 defines a security service as a service provided by a protocol layer of communicating open systems, 

which ensures adequate security of the systems or of data transfers. Perhaps a clearer definition is found in 

RFC 2828, which provides the following definition: a processing or communication service that is provided 



by a system to give a specific kind of protection to system resources; security services implement security 

policies and are implemented by security mechanisms.

AUTHENTICATION 

The assurance that the communicating entity is the one that it claims to be.

Peer Entity Authentication : Used in association with a logical connection to provide confidence in the 

identity of the entities connected.

Data Origin Authentication : In a connectionless transfer, provides assurance that the source of received data 

is as claimed.

ACCESS CONTROL

The prevention of unauthorized use of a resource (i.e., this service controls who can have access to a 

resource, under what conditions access can occur, and what those accessing the resource are allowed to do).

DATA CONFIDENTIALITY

The protection of data from unauthorized disclosure.

Connection Confidentiality : The protection of all user data on a connection.

Connectionless Confidentiality: The protection of all user data in a single data block

Selective-Field Confidentiality: The confidentiality of selected fields within the user data on a connection or 

in a single data block.

Traffic Flow Confidentiality : The protection of the information that might be derived from observation of 

traffic flows.

DATA INTEGRITY

The assurance that data received are exactly as sent by an authorized entity (i.e., contain no 

modification, insertion, deletion, or replay).

Connection Integrity with Recovery : Provides for the integrity of all user data on a connection and detects 

any modification, insertion, deletion, or replay of any data within an entire data sequence, with recovery 

attempted.



Connection Integrity without Recovery: As above, but provides only detection without recovery.

Selective-Field Connection Integrity: Provides for the integrity of selected fields within the user data of a 

data block transferred over a connection and takes the form of determination of whether the selected fields 

have been modified, inserted, deleted, or replayed.

Connectionless Integrity: Provides for the integrity of a single connectionless data block and may take the 

form of detection of data modification. Additionally, a limited form of replay detection may be provided.

Selective-Field Connectionless Integrity: Provides for the integrity of selected fields within a single 

connectionless data block; takes the form of determination of whether the selected fields have been modified.

NONREPUDIATION

Provides protection against denial by one of the entities involved in a communication of having 

participated in all or part of the communication.

Nonrepudiation, Origin: Proof that the message was sent by the specified party.

Nonrepudiation, Destination: Proof that the message was received by the specified party.

1.5. Security Mechanisms

Table 1.3 lists the security mechanisms defined in X.800. As can be seen the mechanisms are divided 

into those that are implemented in a specific protocol layer and those that are not specific to any particular 

protocol layer or security service. These mechanisms will be covered in the appropriate places in the book 

and so we do not elaborate now, except to comment on the definition of encipherment. X.800 distinguishes 

between reversible encipherment mechanisms and irreversible encipherment mechanisms. A reversible 

encipherment mechanism is simply an encryption algorithm that allows data to be encrypted and 

subsequently decrypted. Irreversible encipherment mechanisms include hash algorithms and message 

authentication codes, which are used in digital signature and message authentication applications.

Table 1.3. Security Mechanisms (X.800)

SPECIFIC SECURITY MECHANISMS

May be incorporated into the appropriate protocol layer in order to provide some of the OSI security 

services.



Table 1.3. Security Mechanisms (X.800)

SPECIFIC SECURITY MECHANISMS

Encipherment

The use of mathematical algorithms to transform data into a form that is not readily intelligible. The 

transformation and subsequent recovery of the data depend on an algorithm and zero or more encryption 

keys.

Digital Signature

Data appended to, or a cryptographic transformation of, a data unit that allows a recipient of the data unit to 

prove the source and integrity of the data unit and protect against forgery (e.g., by the recipient).

Access Control

A variety of mechanisms that enforce access rights to resources.

Data Integrity

A variety of mechanisms used to assure the integrity of a data unit or stream of data units.

Authentication Exchange

A mechanism intended to ensure the identity of an entity by means of information exchange.

Traffic Padding

The insertion of bits into gaps in a data stream to frustrate traffic analysis attempts.

Routing Control

Enables selection of particular physically secure routes for certain data and allows routing changes, 

especially when a breach of security is suspected.

Notarization

The use of a trusted third party to assure certain properties of a data exchange.

PERVASIVE SECURITY MECHANISMS

Mechanisms that are not specific to any particular OSI security service or protocol layer.

Trusted Functionality



Table 1.3. Security Mechanisms (X.800)

SPECIFIC SECURITY MECHANISMS

That which is perceived to be correct with respect to some criteria (e.g., as established by a security policy).

Security Label

The marking bound to a resource (which may be a data unit) that names or designates the security attributes 

of that resource.

Event Detection

Detection of security-relevant events.

Security Audit Trail

Data collected and potentially used to facilitate a security audit, which is an independent review and 

examination of system records and activities.

Security Recovery

Deals with requests from mechanisms, such as event handling and management functions, and takes 

recovery actions.

Table 1.4. Relationship between Security Services and Mechanisms

Mechanism
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on Exchange
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Routin
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Y Y Y

Data origin 

authentication

Y Y

Access control Y

Confidentiality Y Y



Table 1.3. Security Mechanisms (X.800)

SPECIFIC SECURITY MECHANISMS

Traffic flow 

confidentiality

Y Y Y

Data integrity Y Y Y

Nonrepudiation Y Y Y

Availability Y Y

1.6. A Model for Network Security

A model for much of what we will be discussing is captured, in very general terms, in Figure 1.5. A 

message is to be transferred from one party to another across some sort of internet. The two parties, who are 

the principals in this transaction, must cooperate for the exchange to take place. A logical information 

channel is established by defining a route through the internet from source to destination and by the 

cooperative use of communication protocols (e.g., TCP/IP) by the two principals.

Figure 1.5. Model for Network Security



Security aspects come into play when it is necessary or desirable to protect the information transmission 

from an opponent who may present a threat to confidentiality, authenticity, and so on. All the techniques for 

providing security have two components:

 A security-related transformation on the information to be sent. Examples include the encryption of 

the message, which scrambles the message so that it is unreadable by the opponent, and the addition 

of a code based on the contents of the message, which can be used to verify the identity of the sender

 Some secret information shared by the two principals and, it is hoped, unknown to the opponent. An 

example is an encryption key used in conjunction with the transformation to scramble the message 

before transmission and unscramble it on reception

This general model shows that there are four basic tasks in designing a particular security service:

1. Design an algorithm for performing the security-related transformation. The algorithm should be such 

that an opponent cannot defeat its purpose.

2. Generate the secret information to be used with the algorithm.

3. Develop methods for the distribution and sharing of the secret information.

4. Specify a protocol to be used by the two principals that makes use of the security algorithm and the 

secret information to achieve a particular security service.

Model for Network Access Security

 using this model requires us to: 

1. select appropriate gatekeeper functions to identify users 

2. implement security controls to ensure only authorised users access designated information or 

resources 

 trusted computer systems may be useful to help implement this model 



Another type of unwanted access is the placement in a computer system of logic that exploits 

vulnerabilities in the system and that can affect application programs as well as utility programs, such as 

editors and compilers. Programs can present two kinds of threats:

 Information access threats intercept or modify data on behalf of users who should not have access to 

that data.

 Service threats exploit service flaws in computers to inhibit use by legitimate users.

Key Terms

access control

active threat

authentication

authenticity

availability

data confidentiality

data integrity

denial of service

encryption

integrity

intruder

masquerade

nonrepudiation

OSI security architecture

passive threat

replay

security attacks

security mechanisms

security services

traffic analysis

Review Questions

1.1 What is the OSI security architecture?

1.2 What is the difference between passive and active security threats?

1.3 List and briefly define categories of passive and active security attacks.

1.4 List and briefly define categories of security services.

1.5 List and briefly define categories of security mechanisms.



Chapter 2. Classical Encryption Techniques

Overview:

 Symmetric encryption is a form of cryptosystem in which encryption and decryption are 

performed using the same key. It is also known as conventional encryption.

 Symmetric encryption transforms plaintext into ciphertext using a secret key and an 

encryption algorithm. Using the same key and a decryption algorithm, the plaintext is 

recovered from the ciphertext.

 The two types of attack on an encryption algorithm are cryptanalysis, based on properties 

of the encryption algorithm, and brute-force, which involves trying all possible keys.

 Traditional (precomputer) symmetric ciphers use substitution and/or transposition 

techniques. Substitution techniques map plaintext elements (characters, bits) into 

ciphertext elements. Transposition techniques systematically transpose the positions of 

plaintext elements.

 Rotor machines are sophisticated precomputer hardware devices that use substitution 

techniques.

 Steganography is a technique for hiding a secret message within a larger one in such a 

way that others cannot discern the presence or contents of the hidden message.

2.1. Symmetric Cipher Model

 Plaintext: This is the original intelligible message or data that is fed into the algorithm as 

input.

 Encryption algorithm: The encryption algorithm performs various substitutions and 

transformations on the plaintext.

 Secret key: The secret key is also input to the encryption algorithm. The key is a value 

independent of the plaintext and of the algorithm. The algorithm will produce a different 

output depending on the specific key being used at the time. The exact substitutions and

transformations performed by the algorithm depend on the key.

 Ciphertext: This is the scrambled message produced as output. It depends on the plaintext 

and the secret key. For a given message, two different keys will produce two different 



ciphertexts. The ciphertext is an apparently random stream of data and, as it stands, is 

unintelligible.

 Decryption algorithm: This is essentially the encryption algorithm run in reverse. It takes 

the ciphertext and the secret key and produces the original plaintext.

Figure 2.1. Simplified Model of Conventional Encryption

There are two requirements for secure use of conventional encryption:

1. We need a strong encryption algorithm. At a minimum, we would like the algorithm to be 

such that an opponent who knows the algorithm and has access to one or more 

ciphertexts would be unable to decipher the ciphertext or figure out the key. This 

requirement is usually stated in a stronger form: The opponent should be unable to 

decrypt ciphertext or discover the key even if he or she is in possession of a number of 

ciphertexts together with the plaintext that produced each ciphertext.

2. Sender and receiver must have obtained copies of the secret key in a secure fashion and 

must keep the key secure. If someone can discover the key and knows the algorithm, all 

communication using this key is readable.

Model of Conventional Cryptosystem:



With the message X and the encryption key K as input, the encryption algorithm forms the 

ciphertext Y = [Y1, Y2, ..., YN]. We can write this as

Y = E(K, X)

2.1. Symmetric Cipher Model

A symmetric encryption scheme has five ingredients

 Plaintext: This is the original intelligible message or data that is fed into the algorithm as 

input.

 Encryption algorithm: The encryption algorithm performs various substitutions and 

transformations on the plaintext.

 Secret key: The secret key is also input to the encryption algorithm. The key is a value 

independent of the plaintext and of the algorithm. The algorithm will produce a different 

output depending on the specific key being used at the time. The exact substitutions and 

transformations performed by the algorithm depend on the key.



 Ciphertext: This is the scrambled message produced as output. It depends on the plaintext 

and the secret key. For a given message, two different keys will produce two different 

ciphertexts. The ciphertext is an apparently random stream of data and, as it stands, is 

unintelligible.

 Decryption algorithm: This is essentially the encryption algorithm run in reverse. It takes 

the ciphertext and the secret key and produces the original plaintext.

There are two requirements for secure use of conventional encryption:

1. We need a strong encryption algorithm. At a minimum, we would like the algorithm to be 

such that an opponent who knows the algorithm and has access to one or more 

ciphertexts would be unable to decipher the ciphertext or figure out the key. This 

requirement is usually stated in a stronger form: The opponent should be unable to 

decrypt ciphertext or discover the key even if he or she is in possession of a number of 

ciphertexts together with the plaintext that produced each ciphertext.

2. Sender and receiver must have obtained copies of the secret key in a secure fashion and 

must keep the key secure. If someone can discover the key and knows the algorithm, all 

communication using this key is readable.

We assume that it is impractical to decrypt a message on the basis of the ciphertext plus

knowledge of the encryption/decryption algorithm. In other words, we do not need to keep the 

algorithm secret; we need to keep only the key secret. This feature of symmetric encryption is 

what makes it feasible for widespread use. The fact that the algorithm need not be kept secret 

means that manufacturers can and have developed low-cost chip implementations of data 

encryption algorithms. These chips are widely available and incorporated into a number of 

products. With the use of symmetric encryption, the principal security problem is maintaining 

the secrecy of the key.

Let us take a closer look at the essential elements of a symmetric encryption scheme, using 

Figure 2.2. A source produces a message in plaintext, X = [X1, X2, ..., XM]. The M elements of X

are letters in some finite alphabet. Traditionally, the alphabet usually consisted of the 26 capital 

letters. Nowadays, the binary alphabet {0, 1} is typically used. For encryption, a key of the form 



K = [K1, K2, ..., KJ] is generated. If the key is generated at the message source, then it must also 

be provided to the destination by means of some secure channel. Alternatively, a third party 

could generate the key and securely deliver it to both source and destination.

With the message X and the encryption key K as input, the encryption algorithm forms the 

ciphertext Y = [Y1, Y2, ..., YN]. We can write this as

Y = E(K, X)

This notation indicates that Y is produced by using encryption algorithm E as a function of the 

plaintext X, with the specific function determined by the value of the key K.

The intended receiver, in possession of the key, is able to invert the transformation:

X = D(K, Y)

An opponent, observing Y but not having access to K or X, may attempt to recover X or K or 

both X and K. It is assumed that the opponent knows the encryption (E) and decryption (D) 

algorithms. If the opponent is interested in only this particular message, then the focus of the 

effort is to recover X by generating a plaintext estimate . Often, however, the opponent is 

interested in being able to read future messages as well, in which case an attempt is made to 

recover K by generating an estimate .

Cryptography

Cryptographic systems are characterized along three independent dimensions:

1. The type of operations used for transforming plaintext to ciphertext. All encryption 

algorithms are based on two general principles: substitution, in which each element in the 

plaintext (bit, letter, group of bits or letters) is mapped into another element, and 

transposition, in which elements in the plaintext are rearranged. The fundamental 

requirement is that no information be lost (that is, that all operations are reversible). Most 

systems, referred to as product systems, involve multiple stages of substitutions and 

transpositions.



2. The number of keys used. If both sender and receiver use the same key, the system is 

referred to as symmetric, single-key, secret-key, or conventional encryption. If the sender 

and receiver use different keys, the system is referred to as asymmetric, two-key, or 

public-key encryption.

3. The way in which the plaintext is processed. A block cipher processes the input one block 

of elements at a time, producing an output block for each input block. A stream cipher

processes the input elements continuously, producing output one element at a time, as it 

goes along.

Cryptanalysis

Typically, the objective of attacking an encryption system is to recover the key in use rather then 

simply to recover the plaintext of a single ciphertext. There are two general approaches to 

attacking a conventional encryption scheme:

 Cryptanalysis: Cryptanalytic attacks rely on the nature of the algorithm plus perhaps 

some knowledge of the general characteristics of the plaintext or even some sample 

plaintext-ciphertext pairs. This type of attack exploits the characteristics of the algorithm 

to attempt to deduce a specific plaintext or to deduce the key being used.

 Brute-force attack: The attacker tries every possible key on a piece of ciphertext until an 

intelligible translation into plaintext is obtained. On average, half of all possible keys 

must be tried to achieve success.

Table 2.1. Types of Attacks on Encrypted Messages

Type of 

Attack

Known to Cryptanalyst

Ciphertext 

only

 Encryption algorithm

 Ciphertext

Known  Encryption algorithm



Table 2.1. Types of Attacks on Encrypted Messages

Type of 

Attack

Known to Cryptanalyst

plaintext  Ciphertext

 One or more plaintext-ciphertext pairs formed with the secret key

Chosen 

plaintext

 Encryption algorithm

 Ciphertext

 Plaintext message chosen by cryptanalyst, together with its 

corresponding ciphertext generated with the secret key

Chosen 

ciphertext

 Encryption algorithm

 Ciphertext

 Purported ciphertext chosen by cryptanalyst, together with its 

corresponding decrypted plaintext generated with the secret key

Chosen text  Encryption algorithm

 Ciphertext

 Plaintext message chosen by cryptanalyst, together with its 

corresponding ciphertext generated with the secret key

 Purported ciphertext chosen by cryptanalyst, together with its 

corresponding decrypted plaintext generated with the secret key

The ciphertext-only attack is the easiest to defend against because the opponent has the 

least amount of information to work with. In many cases, however, the analyst has more 

information. The analyst may be able to capture one or more plaintext messages as well as their 

encryptions. Or the analyst may know that certain plaintext patterns will appear in a message. 

For example, a file that is encoded in the Postscript format always begins with the same pattern, 



or there may be a standardized header or banner to an electronic funds transfer message, and so 

on. All these are examples of known plaintext. With this knowledge, the analyst may be able to 

deduce the key on the basis of the way in which the known plaintext is transformed.

2.2. Substitution Techniques

In this section and the next, we examine a sampling of what might be called classical encryption 

techniques. A study of these techniques enables us to illustrate the basic approaches to 

symmetric encryption used today and the types of cryptanalytic attacks that must be anticipated.

The two basic building blocks of all encryption techniques are substitution and transposition. We 

examine these in the next two sections. Finally, we discuss a system that combines both 

substitution and transposition.

A substitution technique is one in which the letters of plaintext are replaced by other letters or by 

numbers or symbols. if the plaintext is viewed as a sequence of bits, then substitution involves 

replacing plaintext bit patterns with ciphertext bit patterns.

Caesar Cipher

The earliest known use of a substitution cipher, and the simplest, was by Julius Caesar. The 

Caesar cipher involves replacing each letter of the alphabet with the letter standing three places 

further down the alphabet. For example,

plain:  meet me after the toga party

cipher: PHHW PH DIWHU WKH WRJD SDUWB

Note that the alphabet is wrapped around, so that the letter following Z is A. We can define the 

transformation by listing all possibilities, as follows:

plain:  a b c d e f g h i j k l m n o p q r s t u v w x y z

cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Let us assign a numerical equivalent to each letter:



a b c d e f g h i J k l m

0 1 2 3 4 5 6 7 8 9 10 11 12

n o p q r s T u v w x y z

13 14 15 16 17 18 19 20 21 22 23 24 25

Then the algorithm can be expressed as follows. For each plaintext letter p, substitute the 

ciphertext letter C

[2] We define a mod n to be the remainder when a is divided by n. For example, 11 mod 7 = 4. 

See Chapter 4 for a further discussion of modular arithmetic.

C = E(3, p) = (p + 3) mod 26

A shift may be of any amount, so that the general Caesar algorithm is

C = E(k, p) = (p + k) mod 26

where k takes on a value in the range 1 to 25. The decryption algorithm is simply

p = D(k, C) = (C k) mod 26

Three important characteristics of this problem enabled us to use a brute-force cryptanalysis:

1. The encryption and decryption algorithms are known.

2. There are only 25 keys to try.

3. The language of the plaintext is known and easily recognizable.



Monoalphabetic Ciphers

With only 25 possible keys, the Caesar cipher is far from secure. A dramatic increase in the key 

space can be achieved by allowing an arbitrary substitution. Recall the assignment for the Caesar 

cipher:

plain:  a b c d e f g h i j k l m n o p q r s t u v w x y z

cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

If, instead, the "cipher" line can be any permutation of the 26 alphabetic characters, then 

there are 26! or greater than 4 x 1026 possible keys. This is 10 orders of magnitude greater than 

the key space for DES and would seem to eliminate brute-force techniques for cryptanalysis. 

Such an approach is referred to as a monoalphabetic substitution cipher, because a single cipher 

alphabet (mapping from plain alphabet to cipher alphabet) is used per message.

There is, however, another line of attack. If the cryptanalyst knows the nature of the 

plaintext (e.g., noncompressed English text), then the analyst can exploit the regularities of the 

language. To see how such a cryptanalysis might proceed, we give a partial example here that is 

adapted from one in [SINK66]. The ciphertext to be solved is

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ

VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX

EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

As a first step, the relative frequency of the letters can be determined and compared to a 

standard frequency distribution for English, such as is shown in Figure 2.5 (based on 

[LEWA00]). If the message were long enough, this technique alone might be sufficient, but 

because this is a relatively short message, we cannot expect an exact match. In any case, the 

relative frequencies of the letters in the ciphertext (in percentages) are as follows:

P 13.33 H 5.83 F 3.33 B 1.67 C 0.00

Z 11.67 D 5.00 W 3.33 G 1.67 K 0.00



P 13.33 H 5.83 F 3.33 B 1.67 C 0.00

S 8.33 E 5.00 Q 2.50 Y 1.67 L 0.00

U 8.33 V 4.17 T 2.50 I 0.83 N 0.00

O 7.50 X 4.17 A 1.67 J 0.83 R 0.00

M 6.67

Playfair Cipher

The best-known multiple-letter encryption cipher is the Playfair, which treats digrams in 

the plaintext as single units and translates these units into ciphertext digrams.

M O N A R

C H Y B D

E F G I/J K



M O N A R

L P Q S T

U V W X Z

In this case, the keyword is monarchy. The matrix is constructed by filling in the letters 

of the keyword (minus duplicates) from left to right and from top to bottom, and then filling in 

the remainder of the matrix with the remaining letters in alphabetic order. The letters I and J 

count as one letter. Plaintext is encrypted two letters at a time, according to the following rules:

1. Repeating plaintext letters that are in the same pair are separated with a filler letter, such as 

x, so that balloon would be treated as ba lx lo on.

2. Two plaintext letters that fall in the same row of the matrix are each replaced by the letter to 

the right, with the first element of the row circularly following the last. For example, ar is 

encrypted as RM.

3. Two plaintext letters that fall in the same column are each replaced by the letter beneath, 

with the top element of the column circularly following the last. For example, mu is 

encrypted as CM.

4. Otherwise, each plaintext letter in a pair is replaced by the letter that lies in its own row and 

the column occupied by the other plaintext letter. Thus, hs becomes BP and ea becomes IM 

(or JM, as the encipherer wishes).

Hill Cipher:

Another interesting multiletter cipher is the Hill cipher, developed by the mathematician 

Lester Hill in 1929. The encryption algorithm takes m successive plaintext letters and substitutes 

for them m ciphertext letters. The substitution is determined by m linear equations in which each 

character is assigned a numerical value (a = 0, b = 1 ... z = 25). For m = 3, the system can be 

described as follows:



c1 = (k11P1 + k12P2 + k13P3) mod 26

c2 = (k21P1 + k22P2 + k23P3) mod 26

c3 = (k31P1 + k32P2 + k33P3) mod 26

This can be expressed in term of column vectors and matrices:

C = KP mod 26

where C and P are column vectors of length 3, representing the plaintext and ciphertext, and K is 

a 3 x 3 matrix, representing the encryption key. Operations are performed mod 26.

Decryption requires using the inverse of the matrix K. The inverse K1 of a matrix K is 

defined by the equation KK1 = K1K = I, where I is the matrix that is all zeros except for ones 

along the main diagonal from upper left to lower right. The inverse of a matrix does not always 

exist, but when it does, it satisfies the preceding equation. In this case, the inverse is:

It is easily seen that if the matrix K1 is applied to the ciphertext, then the plaintext is 

recovered. To explain how the inverse of a matrix is determined, we make an exceedingly brief 

excursion into linear algebra.[7] For any square matrix (m x m) the determinant equals the sum of 

all the products that can be formed by taking exactly one element from each row and exactly one 

element from each column, with certain of the product terms preceded by a minus sign. For a 2 x 

2 matrix

Polyalphabetic Ciphers

Another way to improve on the simple monoalphabetic technique is to use different 

monoalphabetic substitutions as one proceeds through the plaintext message. The general name 

for this approach is polyalphabetic substitution cipher. All these techniques have the following 

features in common:

1. A set of related monoalphabetic substitution rules is used.

2. A key determines which particular rule is chosen for a given transformation.



The best known, and one of the simplest, such algorithm is referred to as the Vigenère cipher. 

In this scheme, the set of related monoalphabetic substitution rules consists of the 26 Caesar 

ciphers, with shifts of 0 through 25. Each cipher is denoted by a key letter, which is the 

ciphertext letter that substitutes for the plaintext letter a. Thus, a Caesar cipher with a shift of 3 is 

denoted by the key value d.

To aid in understanding the scheme and to aid in its use, a matrix known as the Vigenère 

tableau is constructed (Table 2.3). Each of the 26 ciphers is laid out horizontally, with the key 

letter for each cipher to its left. A normal alphabet for the plaintext runs across the top. The 

process of encryption is simple: Given a key letter x and a plaintext letter y, the ciphertext letter 

is at the intersection of the row labeled x and the column labeled y; in this case the ciphertext is 

V.

2.3. Transposition Techniques

All the techniques examined so far involve the substitution of a ciphertext symbol for a 

plaintext symbol. A very different kind of mapping is achieved by performing some sort of 

permutation on the plaintext letters. This technique is referred to as a transposition cipher.

The simplest such cipher is the rail fence technique, in which the plaintext is written 

down as a sequence of diagonals and then read off as a sequence of rows. For example, to 

encipher the message "meet me after the toga party" with a rail fence of depth 2, we write the 

following:

m e m a t r h t g p r y

e t e f e t e o a a t

The encrypted message is

MEMATRHTGPRYETEFETEOAAT

This sort of thing would be trivial to cryptanalyze. A more complex scheme is to write 

the message in a rectangle, row by row, and read the message off, column by column, but 



permute the order of the columns. The order of the columns then becomes the key to the 

algorithm. For example,

Key:           4 3 1 2 5 6 7

Plaintext:     a t t a c k p

               o s t p o n e

               d u n t i l t

               w o a m x y z

Ciphertext:    TTNAAPTMTSUOAODWCOIXKNLYPETZ

A pure transposition cipher is easily recognized because it has the same letter frequencies 

as the original plaintext. For the type of columnar transposition just shown, cryptanalysis is fairly 

straightforward and involves laying out the ciphertext in a matrix and playing around with 

column positions. Digram and trigram frequency tables can be useful.

The transposition cipher can be made significantly more secure by performing more than 

one stage of transposition. The result is a more complex permutation that is not easily 

reconstructed. Thus, if the foregoing message is reencrypted using the same algorithm,

Key:         4 3 1 2 5 6 7

Input:       t t n a a p t

             m t s u o a o

             d w c o i x k

             n l y p e t z

Output:      NSCYAUOPTTWLTMDNAOIEPAXTTOKZ

To visualize the result of this double transposition, designate the letters in the original 

plaintext message by the numbers designating their position. Thus, with 28 letters in the 

message, the original sequence of letters is

01 02 03 04 05 06 07 08 09 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28



After the first transposition we have

03 10 17 24 04 11 18 25 02 09 16 23 01 08

15 22 05 12 19 26 06 13 20 27 07 14 21 28

which has a somewhat regular structure. But after the second transposition, we have

17 09 05 27 24 16 12 07 10 02 22 20 03 25

15 13 04 23 19 14 11 01 26 21 18 08 06 28

This is a much less structured permutation and is much more difficult to cryptanalyze.

2.4. Rotor Machines

The example just given suggests that multiple stages of encryption can produce an 

algorithm that is significantly more difficult to cryptanalyze. This is as true of substitution 

ciphers as it is of transposition ciphers. Before the introduction of DES, the most important 

application of the principle of multiple stages of encryption was a class of systems known as 

rotor machines



2.5. Steganography

We conclude with a discussion of a technique that is, strictly speaking, not encryption, 

namely, steganography.

A plaintext message may be hidden in one of two ways. The methods of steganography 

conceal the existence of the message, whereas the methods of cryptography render the message 

unintelligible to outsiders by various transformations of the text.[

A simple form of steganography, but one that is time-consuming to construct, is one in which 

an arrangement of words or letters within an apparently innocuous text spells out the real 

message. For example, the sequence of first letters of each word of the overall message spells out 

the hidden message.

 Character marking: Selected letters of printed or typewritten text are overwritten in 

pencil. The marks are ordinarily not visible unless the paper is held at an angle to bright 

light.

 Invisible ink: A number of substances can be used for writing but leave no visible trace 

until heat or some chemical is applied to the paper.

 Pin punctures: Small pin punctures on selected letters are ordinarily not visible unless the 

paper is held up in front of a light.

 Typewriter correction ribbon: Used between lines typed with a black ribbon, the results 

of typing with the correction tape are visible only under a strong light.

Key Terms

block cipher

brute-force attack

Caesar cipher

cipher

ciphertext

computationally secure

conventional encryption

cryptanalysis

cryptographic system

cryptography

cryptology

deciphering

decryption

enciphering

encryption



Hill cipher

monoalphabetic cipher

one-time pad

plaintext

Playfair cipher

polyalphabetic cipher

rail fence cipher

single-key encryption

steganography

stream cipher

symmetric encryption

transposition cipher

unconditionally secure

Vigenère cipher

Review Questions

2.1 What are the essential ingredients of a symmetric cipher?

2.2 What are the two basic functions used in encryption algorithms?

2.3 How many keys are required for two people to communicate via a cipher?

2.4 What is the difference between a block cipher and a stream cipher?

2.5 What are the two general approaches to attacking a cipher?

2.6 List and briefly define types of cryptanalytic attacks based on what is known to the 

attacker.

2.7 What is the difference between an unconditionally secure cipher and a computationally 

secure cipher?

2.8 Briefly define the Caesar cipher.

2.9 Briefly define the monoalphabetic cipher.

2.10 Briefly define the Playfair cipher.



2.11 What is the difference between a monoalphabetic cipher and a polyalphabetic cipher?

2.12 What are two problems with the one-time pad?

2.13 What is a transposition cipher?

2.14 What is steganography?

Chapter 3. Block Ciphers and the Data Encryption Standard

Overview:

 A block cipher is an encryption/decryption scheme in which a block of plaintext is 

treated as a whole and used to produce a ciphertext block of equal length.

 Many block ciphers have a Feistel structure. Such a structure consists of a number of 

identical rounds of processing. In each round, a substitution is performed on one half of 

the data being processed, followed by a permutation that interchanges the two halves. 

The original key is expanded so that a different key is used for each round.

 The Data Encryption Standard (DES) has been the most widely used encryption 

algorithm until recently. It exhibits the classic Feistel structure. DES uses a 64-bit block 

and a 56-bit key.

 Two important methods of cryptanalysis are differential cryptanalysis and linear 

cryptanalysis. DES has been shown to be highly resistant to these two types of attack.

The objective of this chapter is to illustrate the principles of modern symmetric ciphers. For 

this purpose, we focus on the most widely used symmetric cipher: the Data Encryption Standard 

(DES). Although numerous symmetric ciphers have been developed since the introduction of 

DES, and although it is destined to be replaced by the Advanced Encryption Standard (AES), 

DES remains the most important such algorithm. Further, a detailed study of DES provides an 

understanding of the principles used in other symmetric ciphers.



3.1. Block Cipher Principles

Most symmetric block encryption algorithms in current use are based on a structure referred to as 

a Feistel block cipher [FEIS73]. For that reason, it is important to examine the design principles 

of the Feistel cipher. We begin with a comparison of stream ciphers and block ciphers. Then we 

discuss the motivation for the Feistel block cipher structure. Finally, we discuss some of its 

implications.

Stream Ciphers and Block Ciphers

A stream cipher is one that encrypts a digital data stream one bit or one byte at a time. 

Examples of classical stream ciphers are the autokeyed Vigenère cipher and the Vernam cipher. 

A block cipher is one in which a block of plaintext is treated as a whole and used to produce a 

ciphertext block of equal length. Typically, a block size of 64 or 128 bits is used. Using some of 

the modes of operation explained in Chapter 6, a block cipher can be used to achieve the same 

effect as a stream cipher.

Far more effort has gone into analyzing block ciphers. In general, they seem applicable to a 

broader range of applications than stream ciphers. The vast majority of network-based symmetric 

cryptographic applications make use of block ciphers. Accordingly, the concern in this chapter, 

and in our discussions throughout the book of symmetric encryption, will focus on block ciphers.

Motivation for the Feistel Cipher Structure

A block cipher operates on a plaintext block of n bits to produce a ciphertext block of n bits. 

There are 2n possible different plaintext blocks and, for the encryption to be reversible (i.e., for 

decryption to be possible), each must produce a unique ciphertext block. Such a transformation is 

called reversible, or nonsingular. The following examples illustrate nonsingular and singular 

transformation for n = 2.

Reversible Mapping

Plaintext Ciphertext



00 11

01 10

10 00

11 01

Irreversible Mapping

Plaintext Ciphertext

00 11

01 10

10 01

11 01

In the latter case, a ciphertext of 01 could have been produced by one of two plaintext blocks. So 

if we limit ourselves to reversible mappings, the number of different transformations is 2n!.

Figure 3.1. General n-bit-n-bit Block Substitution (shown with n = 4)



Claude Shannon and Substitution-Permutation Ciphers

 Claude Shannon introduced idea of substitution-permutation (S-P) networks in 1949 

paper

 form basis of modern block ciphers 

 S-P nets are based on the two primitive cryptographic operations seen before: 

 substitution (S-box)

 permutation (P-box)

 provide confusion & diffusion of message & key

Confusion and Diffusion

 cipher needs to completely obscure statistical properties of original message

 a one-time pad does this

 more practically Shannon suggested combining S & P elements to obtain:

 diffusion – dissipates statistical structure of plaintext over bulk of ciphertext 

 confusion – makes relationship between ciphertext and key as complex as possible

Feistel Cipher Structure

 Horst Feistel devised the feistel cipher

 based on concept of invertible product cipher

 partitions input block into two halves

 process through multiple rounds which

 perform a substitution on left data half

 based on round function of right half & subkey 



 then have permutation swapping halves

 implements Shannon’s S-P net concept

Feistel Cipher Design Elements

 Block size: Larger block sizes mean greater security (all other things being equal) but 

reduced encryption/decryption speed for a given algorithm. The greater security is 

achieved by greater diffusion Traditionally, a block size of 64 bits has been considered a 

reasonable tradeoff and was nearly universal in block cipher design. However, the new 

AES uses a 128-bit block size.

 Key size: Larger key size means greater security but may decrease encryption/decryption 

speed. The greater security is achieved by greater resistance to brute-force attacks and 



greater confusion. Key sizes of 64 bits or less are now widely considered to be 

inadequate, and 128 bits has become a common size.

 Number of rounds: The essence of the Feistel cipher is that a single round offers 

inadequate security but that multiple rounds offer increasing security. A typical size is 16 

rounds.

 Subkey generation algorithm: Greater complexity in this algorithm should lead to greater 

difficulty of cryptanalysis.

 Round function: Again, greater complexity generally means greater resistance to 

cryptanalysis.

There are two other considerations in the design of a Feistel cipher:

 Fast software encryption/decryption: In many cases, encryption is embedded in 

applications or utility functions in such a way as to preclude a hardware implementation. 

Accordingly, the speed of execution of the algorithm becomes a concern.

 Ease of analysis: Although we would like to make our algorithm as difficult as possible 

to cryptanalyze, there is great benefit in making the algorithm easy to analyze. That is, if 

the algorithm can be concisely and clearly explained, it is easier to analyze that algorithm 

for cryptanalytic vulnerabilities and therefore develop a higher level of assurance as to its 

strength. DES, for example, does not have an easily analyzed functionality.

Feistel Decryption Algorithm

The process of decryption with a Feistel cipher is essentially the same as the encryption 

process. The rule is as follows: Use the ciphertext as input to the algorithm, but use the subkeys 

Ki in reverse order. That is, use Kn in the first round, Kn-1 in the second round, and so on until K1

is used in the last round. This is a nice feature because it means we need not implement two 

different algorithms, one for encryption and one for decryption.

To see that the same algorithm with a reversed key order produces the correct result, 

consider Figure 3.3, which shows the encryption process going down the left-hand side and the 

decryption process going up the right-hand side for a 16-round algorithm (the result would be the 

same for any number of rounds). For clarity, we use the notation LEi and REi for data traveling 



through the encryption algorithm and LDi and RDi for data traveling through the decryption 

algorithm. The diagram indicates that, at every round, the intermediate value of the decryption 

process is equal to the corresponding value of the encryption process with the two halves of the 

value swapped. To put this another way, let the output of the ith encryption round be LEi||REi (Li

concatenated with Ri). Then the corresponding input to the (16 i)th decryption round is REi||LEi

or, equivalently, RD16-i||LD16-i.

Figure 3.3. Feistel Encryption and Decryption



Data Encryption Standard (DES)

 most widely used block cipher in world 

 adopted in 1977 by NBS (now NIST)

 as FIPS PUB 46

 encrypts 64-bit data using 56-bit key

 has widespread use

 has been considerable controversy over its security

DES History

 IBM developed Lucifer cipher

 by team led by Feistel in late 60’s

 used 64-bit data blocks with 128-bit key

 then redeveloped as a commercial cipher with input from NSA and others

 in 1973 NBS issued request for proposals for a national cipher standard

 IBM submitted their revised Lucifer which was eventually accepted as the DES

DES Design Controversy

 although DES standard is public

 was considerable controversy over design 

 in choice of 56-bit key (vs Lucifer 128-bit)

 and because design criteria were classified 

 subsequent events and public analysis show in fact design was appropriate

 use of DES has flourished



 especially in financial applications

 still standardised for legacy application use

Initial Permutation IP

 first step of the data computation 

 IP reorders the input data bits 

 even bits to LH half, odd bits to RH half 

 quite regular in structure (easy in h/w)



 example:

IP(675a6967 5e5a6b5a) = (ffb2194d 004df6fb) 

DES Round Structure

Details of Single Round

Figure 3.5 shows the internal structure of a single round. Again, begin by focusing on the left-

hand side of the diagram. The left and right halves of each 64-bit intermediate value are treated 

as separate 32-bit quantities, labeled L (left) and R (right). As in any classic Feistel cipher, the 

overall processing at each round can be summarized in the following formulas:

Li = Ri-1

Ri = Li-1 x F(Ri-1, Ki)

Figure 3.5. Single Round of DES Algorithm

 uses two 32-bit L & R halves



 as for any Feistel cipher can describe as:

Li = Ri–1

Ri = Li–1  F(Ri–1, Ki)

 F takes 32-bit R half and 48-bit subkey:

 expands R to 48-bits using perm E

 adds to subkey using XOR

 passes through 8 S-boxes to get 32-bit result

finally permutes using 32-bit perm P

Figure 3.6. Calculation of F(R, K)

Substitution Boxes S

 have eight S-boxes which map 6 to 4 bits 

 each S-box is actually 4 little 4 bit boxes 

 outer bits 1 & 6 (row bits) select one row of 4 



 inner bits 2-5 (col bits) are substituted 

 result is 8 lots of 4 bits, or 32 bits

 row selection depends on both data & key

 feature known as autoclaving (autokeying)

 example:

 S(18 09 12 3d 11 17 38 39) = 5fd25e03 

DES Key Schedule

 forms subkeys used in each round

 initial permutation of the key (PC1) which selects 56-bits in two 28-bit halves 

 16 stages consisting of: 

• rotating each half separately either 1 or 2 places depending on the key 

rotation schedule K

• selecting 24-bits from each half & permuting them by PC2 for use in 

round function F 

note practical use issues in h/w vs s/w

DES Decryption

 decrypt must unwind steps of data computation 

 with Feistel design, do encryption steps again  using subkeys in reverse order (SK16 … 

SK1)

 IP undoes final FP step of encryption 

 1st round with SK16 undoes 16th encrypt round

 16th round with SK1 undoes 1st encrypt round 



 then final FP undoes initial encryption IP 

 thus recovering original data value 

Avalanche Effect

 key desirable property of encryption alg 

 where a change of one input or key bit results in changing approx half output bits

 making attempts to “home-in” by guessing keys impossible

 DES exhibits strong avalanche

Strength of DES – Key Size

 56-bit keys have 256 = 7.2 x 1016 values

 brute force search looks hard

 recent advances have shown is possible

 in 1997 on Internet in a few months 

 in 1998 on dedicated h/w (EFF) in a few days 

 in 1999 above combined in 22hrs!

 still must be able to recognize plaintext

 must now consider alternatives to DES

Strength of DES – Analytic Attacks

 now have several analytic attacks on DES

 these utilise some deep structure of the cipher 

 by gathering information about encryptions 

 can eventually recover some/all of the sub-key bits 



 if necessary then exhaustively search for the rest 

 generally these are statistical attacks

 include

 differential cryptanalysis 

 linear cryptanalysis 

 related key attacks 

Strength of DES – Timing Attacks

 attacks actual implementation of cipher

 use knowledge of consequences of implementation to derive information about  some/all 

subkey bits

 specifically use fact that calculations can take varying times depending on the value of 

the inputs to it

 particularly problematic on smartcards 

Differential Cryptanalysis

 one of the most significant recent (public) advances in cryptanalysis 

 known by NSA in 70's cf DES design

 Murphy, Biham & Shamir published in 90’s

 powerful method to analyse block ciphers 

 used to analyse most current block ciphers with varying degrees of success

 DES reasonably resistant to it, cf Lucifer

Differential Cryptanalysis

 a statistical attack against Feistel ciphers 



 uses cipher structure not previously used 

 design of S-P networks has output of function f influenced by both input & key

 hence cannot trace values back through cipher without knowing value of the key 

 differential cryptanalysis compares two related pairs of encryptions

Differential Cryptanalysis Compares Pairs of Encryptions

 with a known difference in the input 

 searching for a known difference in output

 when same subkeys are used

Differential Cryptanalysis

 have some input difference giving some output difference with probability p

 if find instances of some higher probability input / output difference pairs occurring

 can infer subkey that was used in round

 then must iterate process over many rounds (with decreasing probabilities)

 perform attack by repeatedly encrypting plaintext pairs with known input XOR until 

obtain desired output XOR 

 when found

 if intermediate rounds match required XOR have a right pair

 if not then have a wrong pair, relative ratio is S/N for attack 



 can then deduce keys values for the rounds

 right pairs suggest same key bits

 wrong pairs give random values 

 for large numbers of rounds, probability is so low that more pairs are required than exist 

with 64-bit inputs 

 Biham and Shamir have shown how a 13-round iterated characteristic can break the full 

16-round DES 



Linear Cryptanalysis

 another recent development 

 also a statistical method 

 must be iterated over rounds, with decreasing probabilities

 developed by Matsui et al in early 90's

 based on finding linear approximations

 can attack DES with 243 known plaintexts, easier but still in practise infeasible

 find linear approximations with prob p != ½

P[i1,i2,...,ia]  C[j1,j2,...,jb] = K[k1,k2,...,kc]

where ia,jb,kc are bit locations in P,C,K 

 gives linear equation for key bits

 get one key bit using max likelihood alg 

 using a large number of trial encryptions 

 effectiveness given by: |p–1/2|

DES Design Criteria

1. No output bit of any S-box should be too close a linear function of the input bits. 

Specifically, if we select any output bit and any subset of the six input bits, the fraction of 

inputs for which this output bit equals the XOR of these input bits should not be close to 

0 or 1, but rather should be near 1/2.

2. Each row of an S-box (determined by a fixed value of the leftmost and rightmost input 

bits) should include all 16 possible output bit combinations.

3. If two inputs to an S-box differ in exactly one bit, the outputs must differ in at least two 

bits.



4. If two inputs to an S-box differ in the two middle bits exactly, the outputs must differ in 

at least two bits.

5. If two inputs to an S-box differ in their first two bits and are identical in their last two 

bits, the two outputs must not be the same.

6. For any nonzero 6-bit difference between inputs, no more than 8 of the 32 pairs of inputs 

exhibiting that difference may result in the same output difference.

7. This is a criterion similar to the previous one, but for the case of three S-boxes.

The criteria for the permutation P are as follows:

1. The four output bits from each S-box at round i are distributed so that two of them affect 

(provide input for) "middle bits" of round (i + 1) and the other two affect end bits. The 

two middle bits of input to an S-box are not shared with adjacent S-boxes. The end bits 

are the two left-hand bits and the two right-hand bits, which are shared with adjacent S-

boxes.

2. The four output bits from each S-box affect six different S-boxes on the next round, and 

no two affect the same S-box.

3. For two S-boxes j, k, if an output bit from Sj affects a middle bit of Sk on the next round, 

then an output bit from Sk cannot affect a middle bit of Sj. This implies that for j = k, an 

output bit from Sj must not affect a middle bit of Sj.

These criteria are intended to increase the diffusion of the algorithm.

Block Cipher Design

 basic principles still like Feistel’s in 1970’s

 number of rounds

 more is better, exhaustive search best attack

 function f:

 provides “confusion”, is nonlinear, avalanche

 have issues of how S-boxes are selected



 key schedule

 complex subkey creation, key avalanche

Key Terms

avalanche effect

block cipher

confusion

Data Encryption Standard 

(DES)

differential cryptanalysis

diffusion

Feistel cipher

irreversible mapping

key

linear cryptanalysis

permutation

product cipher

reversible mapping

round

round function

subkey

substitution

Review Questions

3.1 Why is it important to study the Feistel cipher?

3.2 What is the difference between a block cipher and a stream cipher?

3.3 Why is it not practical to use an arbitrary reversible substitution cipher of the kind 

shown in Table 3.1?

3.4 What is a product cipher?

3.5 What is the difference between diffusion and confusion?

3.6 Which parameters and design choices determine the actual algorithm of a Feistel 

cipher?

3.7 What is the purpose of the S-boxes in DES?



3.8 Explain the avalanche effect.

3.9 What is the difference between differential and linear cryptanalysis?

Chapter 4: Evaluation Criteria For AES

 clear a replacement for DES was needed

 have theoretical attacks that can break it

 have demonstrated exhaustive key search attacks

 can use Triple-DES – but slow, has small blocks

 US NIST issued call for ciphers in 1997

 15 candidates accepted in Jun 98 

 5 were shortlisted in Aug-99 

 Rijndael was selected as the AES in Oct-2000

 issued as FIPS PUB 197 standard in Nov-2001 

AES Requirements

 private key symmetric block cipher 

 128-bit data, 128/192/256-bit keys 

 stronger & faster than Triple-DES 

 active life of 20-30 years (+ archival use) 

 provide full specification & design details 

 both C & Java implementations

 NIST have released all submissions & unclassified analyses



AES Evaluation Criteria

 initial criteria:

 Security: This refers to the effort required to cryptanalyze an algorithm. The 

emphasis in the evaluation was on the practicality of the attack. Because the 

minimum key size for AES is 128 bits, brute-force attacks with current and 

projected technology were considered impractical. Therefore, the emphasis, with 

respect to this point, is cryptanalysis other than a brute-force attack.

 Cost: NIST intends AES to be practical in a wide range of applications. 

Accordingly, AES must have high computational efficiency, so as to be usable in 

high-speed applications, such as broadband links.

 Algorithm and implementation characteristics: This category includes a variety of 

considerations, including flexibility; suitability for a variety of hardware and 

software implementations; and simplicity, which will make an analysis of security 

more straightforward.

 final criteria

 General security: To assess general security, NIST relied on the public security 

analysis conducted by the cryptographic community. During the course of the 

three-year evaluation process, a number of cryptographers published their 

analyses of the strengths and weaknesses of the various candidates. There was 

particular emphasis on analyzing the candidates with respect to known attacks, 

such as differential and linear cryptanalysis. However, compared to the analysis 

of DES, the amount of time and the number of cryptographers devoted to 

analyzing Rijndael are quite limited. Now that a single AES cipher has been 

chosen, we can expect to see a more extensive security analysis by the 

cryptographic community.

 Software implementations: The principal concerns in this category are execution 

speed, performance across a variety of platforms, and variation of speed with key 

size.

 Restricted-space environments: In some applications, such as smart cards, 

relatively small amounts of random-access memory (RAM) and/or read-only 



memory (ROM) are available for such purposes as code storage (generally in 

ROM); representation of data objects such as S-boxes (which could be stored in 

ROM or RAM, depending on whether pre-computation or Boolean representation 

is used); and subkey storage (in RAM).

 Hardware implementations: Like software, hardware implementations can be 

optimized for speed or for size. However, in the case of hardware, size translates 

much more directly into cost than is usually the case for software 

implementations. Doubling the size of an encryption program may make little 

difference on a general-purpose computer with a large memory, but doubling the 

area used in a hardware device typically more than doubles the cost of the device.

 Attacks on implementations: The criterion of general security, discussed in the 

first bullet, is concerned with cryptanalytic attacks that exploit mathematical 

properties of the algorithms. There is another class of attacks that use physical 

measurements conducted during algorithm execution to gather information about 

quantities such as keys. Such attacks exploit a combination of intrinsic algorithm 

characteristics and implementation-dependent features. Examples of such attacks 

are timing attacks and power analysis. Timing attacks are described in Chapter 3. 

The basic idea behind power analysis [KOCH98, BIHA00] is the observation that 

the power consumed by a smart card at any particular time during the 

cryptographic operation is related to the instruction being executed and to the data 

being processed. For example, multiplication consumes more power than 

addition, and writing 1s consumes more power than writing 0s.

 Encryption versus decryption: This criterion deals with several issues related to 

considerations of both encryption and decryption. If the encryption and 

decryption algorithms differ, then extra space is needed for the decryption. Also, 

whether the two algorithms are the same or not, there may be timing differences 

between encryption and decryption.

 Key agility: Key agility refers to the ability to change keys quickly and with a 

minimum of resources. This includes both subkey computation and the ability to 

switch between different ongoing security associations when subkeys may already 

be available.



 Other versatility and flexibility: [NECH00] indicates two areas that fall into this 

category. Parameter flexibility includes ease of support for other key and block 

sizes and ease of increasing the number of rounds in order to cope with newly 

discovered attacks. Implementation flexibility refers to the possibility of 

optimizing cipher elements for particular environments.

 Potential for instruction-level parallelism: This criterion refers to the ability to 

exploit ILP features in current and future processors.

AES Shortlist

 after testing and evaluation, shortlist in Aug-99: 

 MARS (IBM) - complex, fast, high security margin 

 RC6 (USA) - v. simple, v. fast, low security margin 

 Rijndael (Belgium) - clean, fast, good security margin 

 Serpent (Euro) - slow, clean, v. high security margin 

 Twofish (USA) - complex, v. fast, high security margin 

 then subject to further analysis & comment

 saw contrast between algorithms with 

 few complex rounds verses many simple rounds 

 which refined existing ciphers verses new proposals

The AES Cipher

The Rijndael proposal for AES defined a cipher in which the block length and the key length can 

be independently specified to be 128, 192, or 256 bits. The AES specification uses the same 

three key size alternatives but limits the block length to 128 bits. A number of AES parameters 

depend on the key length (Table 5.3). In the description of this section, we assume a key length 

of 128 bits, which is likely to be the one most commonly implemented.



Table 5.3. AES Parameters

Key size (words/bytes/bits) 4/16/128 6/24/192 8/32/256

Plaintext block size (words/bytes/bits) 4/16/128 4/16/128 4/16/128

Number of rounds 10 12 14

Round key size (words/bytes/bits) 4/16/128 4/16/128 4/16/128

Expanded key size (words/bytes) 44/176 52/208 60/240

Rijndael was designed to have the following characteristics:

 Resistance against all known attacks

 Speed and code compactness on a wide range of platforms

 Design simplicity

Figure AES Encryption and Decryption

Before delving into details, we can make several comments about the overall AES structure:

1. One noteworthy feature of this structure is that it is not a Feistel structure. Recall that in 

the classic Feistel structure, half of the data block is used to modify the other half of the 

data block, and then the halves are swapped. Two of the AES finalists, including 

Rijndael, do not use a Feistel structure but process the entire data block in parallel during 

each round using substitutions and permutation.

2. The key that is provided as input is expanded into an array of forty-four 32-bit words, 

w[i]. Four distinct words (128 bits) serve as a round key for each round; these are 

indicated in above figure

3. Four different stages are used, one of permutation and three of substitution:

o Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of the 

block

o ShiftRows: A simple permutation

o MixColumns: A substitution that makes use of arithmetic over GF(28)



o AddRoundKey: A simple bitwise XOR of the current block with a portion of the 

expanded key

4. The structure is quite simple. For both encryption and decryption, the cipher begins with 

an AddRoundKey stage, followed by nine rounds that each includes all four stages, 

followed by a tenth round of three stages. The figure bellow depicts the structure of a full 

encryption round.



5. Only the AddRoundKey stage makes use of the key. For this reason, the cipher begins 

and ends with an AddRoundKey stage. Any other stage, applied at the beginning or end, 

is reversible without knowledge of the key and so would add no security.

6. The AddRoundKey stage is, in effect, a form of Vernam cipher and by itself would not be 

formidable. The other three stages together provide confusion, diffusion, and 

nonlinearity, but by themselves would provide no security because they do not use the 

key. We can view the cipher as alternating operations of XOR encryption 

(AddRoundKey) of a block, followed by scrambling of the block (the other three stages), 

followed by XOR encryption, and so on. This scheme is both efficient and highly secure.

7. Each stage is easily reversible. For the Substitute Byte, ShiftRows, and MixColumns 

stages, an inverse function is used in the decryption algorithm. For the AddRoundKey 



stage, the inverse is achieved by XORing the same round key to the block, using the 

result that A A B = B.

8. As with most block ciphers, the decryption algorithm makes use of the expanded key in 

reverse order. However, the decryption algorithm is not identical to the encryption 

algorithm. This is a consequence of the particular structure of AES.

9. Once it is established that all four stages are reversible, it is easy to verify that decryption 

does recover the plaintext.

10. The final round of both encryption and decryption consists of only three stages. Again, 

this is a consequence of the particular structure of AES and is required to make the cipher 

reversible.

Byte Substitution

 a simple substitution of each byte

 uses one table of 16x16 bytes containing a permutation of all 256 8-bit values

 each byte of state is replaced by byte indexed by row (left 4-bits) & column (right 4-bits)

 eg. byte {95} is replaced by byte in row 9 column 5

 which has value {2A}

 S-box constructed using defined transformation of values in GF(28)

 designed to be resistant to all known attacks



Shift Rows

 a circular byte shift in each each 

 1st row is unchanged

 2nd row does 1 byte circular shift to left

 3rd row does 2 byte circular shift to left

 4th row does 3 byte circular shift to left

 decrypt inverts using shifts to right

 since state is processed by columns, this step permutes bytes between the columns

Mix Columns

 each column is processed separately

 each byte is replaced by a value dependent on all 4 bytes in the column

 effectively a matrix multiplication in GF(28) using prime poly m(x) =x8+x4+x3+x+1



 can express each col as 4 equations

 to derive each new byte in col 

 decryption requires use of inverse matrix

 with larger coefficients, hence a little harder

 have an alternate characterisation 

 each column a 4-term polynomial

 with coefficients in GF(28) 

 and polynomials multiplied modulo (x4+1)

Add Round Key

 XOR state with 128-bits of the round key

 again processed by column (though effectively a series of byte operations)

 inverse for decryption identical

 since XOR own inverse, with reversed keys

 designed to be as simple as possible

 a form of Vernam cipher on expanded key

 requires other stages for complexity / security



AES Round

AES Key Expansion

 takes 128-bit (16-byte) key and expands into array of 44/52/60 32-bit words

 start by copying key into first 4 words



 then loop creating words that depend on values in previous & 4 places back

 in 3 of 4 cases just XOR these together

 1st word in 4 has rotate + S-box + XOR round constant on previous, before XOR 

4th back

Key Expansion Rationale

 designed to resist known attacks

 design criteria included

 knowing part key insufficient to find many more

 invertible transformation

 fast on wide range of CPU’s

 use round constants to break symmetry

 diffuse key bits into round keys

 enough non-linearity to hinder analysis



 simplicity of description

AES Decryption

 AES decryption is not identical to encryption since steps done in reverse

 but can define an equivalent inverse cipher with steps as for encryption

 but using inverses of each step

 with a different key schedule

 works since result is unchanged when

 swap byte substitution & shift rows

 swap mix columns & add (tweaked) round key



Implementation Aspects

 can efficiently implement on 8-bit CPU

 byte substitution works on bytes using a table of 256 entries

 shift rows is simple byte shift

 add round key works on byte XOR’s

 mix columns requires matrix multiply in GF(28) which works on byte values, can 

be simplified to use table lookups & byte XOR’s

 can efficiently implement on 32-bit CPU

 redefine steps to use 32-bit words

 can precompute 4 tables of 256-words

 then each column in each round can be computed using 4 table lookups + 4 XORs

 at a cost of 4Kb to store tables

 designers believe this very efficient implementation was a key factor in its selection as 

the AES cipher

Key Terms

Advanced Encryption Standard (AES)

National Institute of Standards and 

Technology (NIST)

power analysis

Rijndael

S-box

Review Questions

1 What was the original set of criteria used by NIST to evaluate candidate AES ciphers?

2 What was the final set of criteria used by NIST to evaluate candidate AES ciphers?

3 What is power analysis?

4 What is the difference between Rijndael and AES?



5 What is the purpose of the State array?

6 How is the S-box constructed?

7 Briefly describe SubBytes.

8 Briefly describe ShiftRows.

9 How many bytes in State are affected by ShiftRows?

10 Briefly describe MixColumns.

11 Briefly describe AddRoundKey.

12 Briefly describe the key expansion algorithm.

13 What is the difference between SubBytes and SubWord?

14 What is the difference between ShiftRows and RotWord?

15 What is the difference between the AES decryption algorithm and the equivalent 

inverse cipher?

Chapter 5: Multiple Encryption & DES

 clear a replacement for DES was needed

 theoretical attacks that can break it

 demonstrated exhaustive key search attacks

 AES is a new cipher alternative

 prior to this alternative was to use multiple encryption with DES implementations



 Triple-DES is the chosen form

Double-DES?

 could use 2 DES encrypts on each block

 C = EK2(EK1(P)) 

 issue of reduction to single stage

 and have “meet-in-the-middle” attack

 works whenever use a cipher twice

 since X = EK1(P) = DK2(C)

 attack by encrypting P with all keys and store

 then decrypt C with keys and match X value

 can show takes O(256) steps

Triple-DES with Two-Keys

 hence must use 3 encryptions

 would seem to need 3 distinct keys

 but can use 2 keys with E-D-E sequence

 C = EK1(DK2(EK1(P))) 

 nb encrypt & decrypt equivalent in security

 if K1=K2 then can work with single DES

 standardized in ANSI X9.17 & ISO8732

 no current known practical attacks

Triple-DES with Three-Keys

 although are no practical attacks on two-key Triple-DES have some indications

 can use Triple-DES with Three-Keys to avoid even these

 C = EK3(DK2(EK1(P))) 

 has been adopted by some Internet applications, eg PGP, S/MIME



Modes of Operation

 block ciphers encrypt fixed size blocks

 eg. DES encrypts 64-bit blocks with 56-bit key 

 need some way to en/decrypt arbitrary amounts of data in practise

 ANSI X3.106-1983 Modes of Use (now FIPS 81) defines 4 possible modes

 subsequently 5 defined for AES & DES

 have block and stream modes

Electronic Codebook Book (ECB)

 message is broken into independent blocks which are encrypted 

 each block is a value which is substituted, like a codebook, hence name 

 each block is encoded independently of the other blocks 

Ci = DESK1(Pi) 

uses: secure transmission of single values



Advantages and Limitations of ECB

 message repetitions may show in ciphertext 

 if aligned with message block 

 particularly with data such graphics 

 or with messages that change very little, which become a code-book analysis 

problem 

 weakness is due to the encrypted message blocks being independent 

 main use is sending a few blocks of data 

Cipher Block Chaining (CBC)

 message is broken into blocks 

 linked together in encryption operation 

 each previous cipher blocks is chained with current plaintext block, hence name 

 use Initial Vector (IV) to start process 

Ci = DESK1(Pi XOR Ci-1)

C-1 = IV 

 uses: bulk data encryption, authentication



Message Padding

 at end of message must handle a possible last short block 

 which is not as large as blocksize of cipher

 pad either with known non-data value (eg nulls)

 or pad last block along with count of pad size 

• eg. [ b1 b2 b3 0 0 0 0 5] 

• means have 3 data bytes, then 5 bytes pad+count 

 this may require an extra entire block over those in message

 there are other, more esoteric modes, which avoid the need for an extra block

Advantages and Limitations of CBC

 a ciphertext block depends on all blocks before it

 any change to a block affects all following ciphertext blocks

 need Initialization Vector (IV) 

 which must be known to sender & receiver 

 if sent in clear, attacker can change bits of first block, and change IV to 

compensate 

 hence IV must either be a fixed value (as in EFTPOS) 

 or must be sent encrypted in ECB mode before rest of message

Cipher FeedBack (CFB)

 message is treated as a stream of bits 

 added to the output of the block cipher 

 result is feed back for next stage (hence name) 

 standard allows any number of bit (1,8, 64 or 128 etc) to be feed back 

 denoted CFB-1, CFB-8, CFB-64, CFB-128 etc 

 most efficient to use all bits in block (64 or 128)

Ci = Pi XOR DESK1(Ci-1)



C-1 = IV 

 uses: stream data encryption, authentication

Advantages and Limitations of CFB

 appropriate when data arrives in bits/bytes 

 most common stream mode 

 limitation is need to stall while do block encryption after every n-bits 

 note that the block cipher is used in encryption mode at both ends 

 errors propogate for several blocks after the error 

Output FeedBack (OFB)

 message is treated as a stream of bits 



 output of cipher is added to message 

 output is then feed back (hence name) 

 feedback is independent of message 

 can be computed in advance

Ci = Pi XOR Oi

Oi = DESK1(Oi-1)

O-1 = IV

 uses: stream encryption on noisy channels



Advantages and Limitations of OFB

 bit errors do not propagate 

 more vulnerable to message stream modification

 a variation of a Vernam cipher 

 hence must never reuse the same sequence (key+IV) 

 sender & receiver must remain in sync

 originally specified with m-bit feedback

 subsequent research has shown that only full block feedback (ie CFB-64 or CFB-128)

should ever be used

Counter (CTR)

 a “new” mode, though proposed early on

 similar to OFB but encrypts counter value rather than any feedback value

 must have a different key & counter value for every plaintext block (never reused)

Ci = Pi XOR Oi

Oi = DESK1(i)

 uses: high-speed network encryptions



Advantages and Limitations of CTR

 efficiency

 can do parallel encryptions in h/w or s/w

 can preprocess in advance of need

 good for bursty high speed links

 random access to encrypted data blocks

 provable security (good as other modes)

 but must ensure never reuse key/counter values, otherwise could break (cf OFB)

Key Terms

Block cipher modes of operation

cipher block chaining mode (CBC)

cipher feedback mode (CFB)

meet-in-the-middle attack

counter mode (CTR)

electronic codebook mode (ECB)

output feedback mode (OFB)

Triple DES (3DES)

Review Questions

1 What is triple encryption?

2 What is a meet-in-the-middle attack?

3 How many keys are used in triple encryption?

4 Why is the middle portion of 3DES a decryption rather than an encryption?

5 List important design considerations for a stream cipher.

6 Why is it not desirable to reuse a stream cipher key?



7 What primitive operations are used in RC4?

8 Why do some block cipher modes of operation only use encryption while others use 

both encryption and decryption?

Chapter 6: Placement of Encryption

 traditionally symmetric encryption is used to provide message confidentiality

 have two major placement alternatives

 link encryption

 encryption occurs independently on every link

 implies must decrypt traffic between links

 requires many devices, but paired keys

 end-to-end encryption

 encryption occurs between original source and final destination

 need devices at each end with shared keys



 when using end-to-end encryption must leave headers in clear

 so network can correctly route information

 hence although contents protected, traffic pattern flows are not

 ideally want both at once

 end-to-end protects data contents over entire path and provides authentication

 link protects traffic flows from monitoring

 can place encryption function at various layers in OSI Reference Model

 link encryption occurs at layers 1 or 2

 end-to-end can occur at layers 3, 4, 6, 7

 as move higher less information is encrypted but it is more secure though more 

complex with more entities and keys



Encryption vs Protocol Level

Traffic Analysis

 Identities of partners

 How frequently the partners are communicating

 Message pattern, message length, or quantity of messages that suggest important 

information is being exchanged

 The events that correlate with special conversations between particular partners

 is monitoring of communications flows between parties



 useful both in military & commercial spheres

 can also be used to create a covert channel

 link encryption obscures header details

 but overall traffic volumes in networks and at end-points is still visible

 traffic padding can further obscure flows

 but at cost of continuous traffic

Key Terms

Blum, Blum, Shub generator

covert channel

deskewing

end-to-end encryption

key distribution

key distribution center (KDC)

linear congruential

link encryption

master key

nonce

pseudorandom number generator (PRNG)

session key

skew

traffic padding

true random number generator

wiring closet

Review Questions

1 For a user workstation in a typical business environment, list potential locations for 

confidentiality attacks.

2 What is the difference between link and end-to-end encryption?

3 What types of information might be derived from a traffic analysis attack?



4 What is traffic padding and what is its purpose?

5 List ways in which secret keys can be distributed to two communicating parties.

6 What is the difference between a session key and a master key?

7 What is a nonce?


